If it's not what You are looking for type in the equation solver your own equation and let us solve it.
200=-16t^2+140t
We move all terms to the left:
200-(-16t^2+140t)=0
We get rid of parentheses
16t^2-140t+200=0
a = 16; b = -140; c = +200;
Δ = b2-4ac
Δ = -1402-4·16·200
Δ = 6800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6800}=\sqrt{400*17}=\sqrt{400}*\sqrt{17}=20\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-20\sqrt{17}}{2*16}=\frac{140-20\sqrt{17}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+20\sqrt{17}}{2*16}=\frac{140+20\sqrt{17}}{32} $
| 12=-4(-6x-3) | | x^2+(-2x)^2=180 | | 9=(2n+4-9n)(-2)-25 | | 5x+2=3x–6 | | 9+5x=-2+58 | | 81=9k | | 0=5m-(2+m-7) | | 18=2/5t | | -5x+3=-4-8 | | 32=8f-9 | | 0=5m-(2+m-7 | | 9x+14=10x+5 | | 11x-4+7x+4=90 | | 6a-12=-12 | | 15a-62=-32 | | 10x+50=5x+5 | | 5x+6=27-2x | | 6h+2=4-5h | | -(3-r)+12=13 | | 4x+1=7x=20 | | -5a+4=-21 | | 8x+16=84 | | 4x=4x=3 | | -90=-9-9a | | x+81=144 | | v=4/3*3.14*1^3 | | 6(-2+4r+5)-20r=26 | | 5(x+3)=2-(x-1) | | -23=4a-15 | | 7/6(6d-18)23=19 | | x+81=225 | | -5a+14=59 |